Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167034, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38278334

RESUMO

L-Ser supply in the central nervous system of mammals mostly relies on its endogenous biosynthesis by the phosphorylated pathway (PP). Defects in any of the three enzymes operating in the pathway result in a group of neurometabolic diseases collectively known as serine deficiency disorders (SDDs). Phosphoserine phosphatase (PSP) catalyzes the last, irreversible step of the PP. Here we investigated in detail the role of physiological modulators of human PSP activity and the properties of three natural PSP variants (A35T, D32N and M52T) associated with SDDs. Our results, partially contradicting previous reports, indicate that: i. PSP is almost fully saturated with Mg2+ under physiological conditions and fluctuations in Mg2+ and Ca2+ concentrations are unlikely to play a modulatory role on PSP activity; ii. Inhibition by L-Ser, albeit at play on the isolated PSP, does not exert any effect on the flux through the PP unless the enzyme activity is severely impaired by inactivating substitutions; iii. The so-far poorly investigated A35T substitution was the most detrimental, with a 50-fold reduction in catalytic efficiency, and a reduction in thermal stability (as well as an increase in the IC50 for L-Ser). The M52T substitution had similar, but milder effects, while the D32N variant behaved like the wild-type enzyme. iv. Predictions of the structural effects of the A35T and M52T substitutions with ColabFold suggest that they might affect the structure of the flexible helix-loop region.


Assuntos
Dapsona/análogos & derivados , Magnésio , Monoéster Fosfórico Hidrolases , Serina , Animais , Humanos , Serina/metabolismo , Magnésio/farmacologia , Íons , Mamíferos/metabolismo
2.
Biofactors ; 50(1): 181-200, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37650587

RESUMO

In the brain, the non-essential amino acid L-serine is produced through the phosphorylated pathway (PP) starting from the glycolytic intermediate 3-phosphoglycerate: among the different roles played by this amino acid, it can be converted into D-serine and glycine, the two main co-agonists of NMDA receptors. In humans, the enzymes of the PP, namely phosphoglycerate dehydrogenase (hPHGDH, which catalyzes the first and rate-limiting step of this pathway), 3-phosphoserine aminotransferase, and 3-phosphoserine phosphatase are likely organized in the cytosol as a metabolic assembly (a "serinosome"). The hPHGDH deficiency is a pathological condition biochemically characterized by reduced levels of L-serine in plasma and cerebrospinal fluid and clinically identified by severe neurological impairment. Here, three single-point variants responsible for hPHGDH deficiency and Neu-Laxova syndrome have been studied. Their biochemical characterization shows that V261M, V425M, and V490M substitutions alter either the kinetic (both maximal activity and Km for 3-phosphoglycerate in the physiological direction) and the structural properties (secondary, tertiary, and quaternary structure, favoring aggregation) of hPHGDH. All the three variants have been successfully ectopically expressed in U251 cells, thus the pathological effect is not due to hindered expression level. At the cellular level, mistargeting and aggregation phenomena have been observed in cells transiently expressing the pathological protein variants, as well as a reduced L-serine cellular level. Previous studies demonstrated that the pharmacological supplementation of L-serine in hPHGDH deficiencies could ameliorate some of the related symptoms: our results now suggest the use of additional and alternative therapeutic approaches.


Assuntos
Encefalopatias , Ácidos Glicéricos , Serina , Humanos , Serina/genética , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/química , Encefalopatias/metabolismo , Aminoácidos
3.
3 Biotech ; 13(7): 243, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37346390

RESUMO

The 'enzyme prodrug therapy' represents a promising strategy to overcome limitations of current cancer treatments by the systemic administration of prodrugs, converted by a foreign enzyme into an active anticancer compound directly in tumor sites. One example is D-amino acid oxidase (DAAO), a dimeric flavoenzyme able to catalyze the oxidative deamination of D-amino acids with production of hydrogen peroxide, a reactive oxygen species (ROS), able to favor cancer cells death. A DAAO variant containing five aminoacidic substitutions (mDAAO) was demonstrated to possess a better therapeutic efficacy under low O2 concentration than wild-type DAAO (wtDAAO). Recently, aiming to design promising nanocarriers for DAAO, multi-walled carbon nanotubes (MWCNTs) were functionalized with polyethylene glycol (PEG) to reduce their tendency to aggregation and to improve their biocompatibility. Here, wtDAAO and mDAAO were adsorbed on PEGylated MWCNTs and their activity and cytotoxicity were tested. While PEG-MWCNTs-DAAOs have shown a higher activity than pristine MWCNTs-DAAO (independently on the DAAO variant used), PEG-MWCNTs-mDAAO showed a higher cytotoxicity than PEG-MWCNTs-wtDAAO at low O2 concentration. In order to evaluate the nanocarriers' biocompatibility, PEG-MWCNTs-DAAOs were incubated in human serum and the composition of protein corona was investigated via nLC-MS/MS, aiming to characterize both soft and hard coronas. The mDAAO variant has influenced the bio-corona composition in both number of proteins and presence of opsonins and dysopsonins: notably, the soft corona of PEG-MWCNTs-mDAAO contained less proteins and was more enriched in proteins able to inhibit the immune response than PEG-MWCNTs-wtDAAO. Considering the obtained results, the PEGylated MWCNTs conjugated with the mDAAO variant seems a promising candidate for a selective antitumor oxidative therapy: under anoxic-like conditions, this novel drug delivery system showed a remarkable cytotoxic effect controlled by the substrate addition, against different tumor cell lines, and a bio-corona composition devoted to prolong its blood circulation time, thus improving the drug's biodistribution. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03568-1.

4.
FEBS J ; 286(13): 2505-2521, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30955232

RESUMO

About 90% of congenital central hypoventilation syndrome (CCHS) patients show polyalanine triplet expansions in the coding region of transcription factor PHOX2B, which renders this protein an intriguing target to understand the insurgence of this syndrome and for the design of a novel therapeutical approach. Consistently with the role of PHOX2B as a transcriptional regulator, it is reasonable that a general transcriptional dysregulation caused by the polyalanine expansion might represent an important mechanism underlying CCHS pathogenesis. Therefore, this study focused on the biochemical characterization of different PHOX2B variants, such as a variant containing the correct C-terminal (20 alanines) stretch, one of the most frequent polyalanine expansions (+7 alanines), and a variant lacking the complete alanine stretch (0 alanines). Comparison of the different variants by a multidisciplinary approach based on different methodologies (including circular dichroism, spectrofluorimetry, light scattering, and Atomic Force Microscopy studies) highlighted the propensity to aggregate for the PHOX2B variant containing the polyalanine expansion (+7-alanines), especially in the presence of DNA, while the 0-alanines variant resembled the protein with the correct polyalanine length. Moreover, and unexpectedly, the formation of fibrils was revealed only for the pathological variant, suggesting a plausible role of such fibrils in the insurgence of CCHS.


Assuntos
Proteínas de Homeodomínio/química , Multimerização Proteica , Fatores de Transcrição/química , Motivos de Aminoácidos , Células HeLa , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Mutação , Peptídeos/química , Peptídeos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Brain ; 142(2): 249-254, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30601948

RESUMO

α-Synuclein oligomers are crucial players in the pathogenesis of Parkinson's disease. Some mechanisms involved in α-synuclein oligomer detrimental effects include membrane damage, neuroinflammation and protein-protein interactions. Recently, the cellular prion protein (PrPC) emerged as an interactor of α-synuclein oligomers, apparently mediating their detrimental activities. Through direct in vivo and in vitro approaches we herein investigated the existence of a direct cross-talk between α-synuclein oligomers and PrPC. In vitro, we assessed α-synuclein oligomer toxicity by comparing the effect in Prnp+/+ versus PrPC knockout (Prnp0/0) hippocampal neurons. Through an in vivo acute mouse model, where α-synuclein oligomers injected intracerebroventricularly induce memory impairment and neuroinflammation, we verified whether these detrimental effects were preserved in Prnp0/0 mice. In addition, PrPC-α-synuclein oligomer direct binding was investigated through surface plasmon resonance. We found that PrPC was not mandatory to mediate α-synuclein oligomer detrimental effects in vitro or in vivo. Indeed, α-synuclein oligomer toxicity was comparable in Prnp+/+ and Prnp0/0 neurons and both Prnp+/+ and Prnp0/0 mice injected with α-synuclein oligomers displayed memory deficit and hippocampal gliosis. Moreover, surface plasmon resonance analyses ruled out PrPC-α-synuclein oligomer binding. Our findings indicate that PrPC neither binds α-synuclein oligomers nor mediates their detrimental actions. Therefore, it is likely that PrPC-dependent and PrPC-independent pathways co-exist in Parkinson's disease.


Assuntos
Sobrevivência Celular/fisiologia , Hipocampo/metabolismo , Hipocampo/patologia , Proteínas Priônicas/metabolismo , alfa-Sinucleína/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Priônicas/deficiência , Ligação Proteica/fisiologia , alfa-Sinucleína/farmacologia
6.
Brain Behav Immun ; 69: 591-602, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29458199

RESUMO

Alpha-synuclein oligomers (α-synOs) are emerging as crucial factors in the pathogenesis of synucleinopathies. Although the connection between neuroinflammation and α-syn still remains elusive, increasing evidence suggests that extracellular moieties activate glial cells leading to neuronal damage. Using an acute mouse model, we explored whether α-synOs induce memory impairment in association to neuroinflammation, addressing Toll-like receptors 2 and 4 (TLR2 and TLR4) involvement. We found that α-synOs abolished mouse memory establishment in association to hippocampal glial activation. On brain slices α-synOs inhibited long-term potentiation. Indomethacin and Ibuprofen prevented the α-synOs-mediated detrimental actions. Furthermore, while the TLR2 functional inhibitor antibody prevented the memory deficit, oligomers induced memory deficits in the TLR4 knockout mice. In conclusion, solely α-synOs induce memory impairment likely inhibiting synaptic plasticity. α-synOs lead to hippocampal gliosis that is involved in memory impairment. Moreover, while the oligomer-mediated detrimental actions are TLR2 dependent, the involvement of TLR4 was ruled out.


Assuntos
Hipocampo/efeitos dos fármacos , Memória/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Receptor 2 Toll-Like/metabolismo , alfa-Sinucleína/farmacologia , Animais , Hipocampo/metabolismo , Potenciação de Longa Duração/efeitos dos fármacos , Camundongos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Reconhecimento Psicológico/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
7.
Biochim Biophys Acta Proteins Proteom ; 1866(7): 822-830, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29274788

RESUMO

In the brain, the enzyme d-amino acid oxidase (DAAO) catalyzes the oxidative deamination of d-serine, a main positive modulator of the N-methyl-d-aspartate subtype of glutamate receptors (NMDAR). Dysregulation in d-serine signaling is implicated in the NMDAR dysfunctions observed in various brain diseases, such as amyotrophic lateral sclerosis, Alzheimer's disease, schizophrenia. A strain of ddY mice lacking DAAO activity due to the G181R substitution (DAAOG181R mice) and exhibiting increased d-serine concentration as compared to wild-type mice shows altered pain response, improved adaptative learning and cognitive functions, and larger hippocampal long-term potentiation. In past years, this mice line has been used to shed light on physiological and pathological brain functions related to NMDAR. Here, we decided to introduce the corresponding substitution in human DAAO (hDAAO). The recombinant G183R hDAAO is produced as an inactive apoprotein: the substitution alters the protein conformation that negatively affects the ability to bind the flavin cofactor in the orientation required for hydride-transfer during catalysis. At the cellular level, the overexpressed G183R hDAAO is not fully targeted to peroxisomes, forms protein aggregates showing a strong colocalization with ubiquitin, and significantly (7-fold) increases both the d-serine cellular concentration and the D/(D+L)-serine ratio. Taken together, our investigation warrants caution in using DAAOG181R mice: the abolition of enzymatic activity is coupled to DAAO aggregation, a central process in different pathological conditions. The effect due to G181R substitution in DAAO could be misleading: the effects due to impairment of d-serine degradation overlap with those related to aggregates accumulation.


Assuntos
D-Aminoácido Oxidase/química , Animais , D-Aminoácido Oxidase/fisiologia , Escherichia coli/genética , Humanos , Camundongos , Agregados Proteicos , Conformação Proteica , Serina/metabolismo
8.
Front Mol Biosci ; 4: 102, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29404340

RESUMO

D-amino acid oxidase (DAAO) is a well-known flavoenzyme that catalyzes the oxidative FAD-dependent deamination of D-amino acids. As a result of the absolute stereoselectivity and broad substrate specificity, microbial DAAOs have been employed as industrial biocatalysts in the production of semi-synthetic cephalosporins and enantiomerically pure amino acids. Moreover, in mammals, DAAO is present in specific brain areas and degrades D-serine, an endogenous coagonist of the N-methyl-D-aspartate receptors (NMDARs). Dysregulation of D-serine metabolism due to an altered DAAO functionality is related to pathological NMDARs dysfunctions such as in amyotrophic lateral sclerosis and schizophrenia. In this protocol paper, we describe a variety of direct assays based on the determination of molecular oxygen consumption, reduction of alternative electron acceptors, or α-keto acid production, of coupled assays to detect the hydrogen peroxide or the ammonium production, and an indirect assay of the α-keto acid production based on a chemical derivatization. These analytical assays allow the determination of DAAO activity both on recombinant enzyme preparations, in cells, and in tissue samples.

9.
FEBS J ; 283(18): 3353-70, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27400736

RESUMO

The human flavoenzyme d-amino acid oxidase (hDAAO) degrades the NMDA-receptor modulator d-serine in the brain. Although hDAAO has been extensively characterized, little is known about its main modulator pLG72, a small protein encoded by the primate-specific gene G72 that has been associated with schizophrenia susceptibility. pLG72 interacts with neosynthesized hDAAO, promoting its inactivation and degradation. In this work, we used low-resolution techniques to characterize the surface topology of the hDAAO-pLG72 complex. By using limited proteolysis coupled to mass spectrometry, we could map the exposed regions in the two proteins after complex formation and highlighted an increased sensitivity to proteolysis of hDAAO in complex with pLG72. Cross-linking experiments by using bis(sulfosuccinimidyl)suberate identified the single covalent bond between T182 in hDAAO and K62 in pLG72. In order to validate the designed mode of interaction, three pLG72 variants incrementally truncated at the C terminus, in addition to a form lacking the 71 N-terminal residues, were produced. All variants were dimeric, folded, and interacted with hDAAO. The strongest decrease in affinity for hDAAO (as well as for the hydrophobic drug chlorpromazine) was apparent for the N-terminally deleted pLG72(72-153) form, which lacked K62. On the other hand, eliminating the disordered C-terminal tail yielded a more stable pLG72 protein, improved the binding to hDAAO, although giving lower enzyme inhibition. Elucidation of the mode of hDAAO-pLG72 interaction now makes it possible to design novel molecules that, by targeting the protein complex, can be therapeutically advantageous for diseases related to impairment in d-serine metabolism.


Assuntos
Encéfalo/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/metabolismo , Neurotransmissores/metabolismo , Serina/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/genética , Reagentes de Ligações Cruzadas , D-Aminoácido Oxidase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Moleculares , Neurotransmissores/química , Domínios e Motivos de Interação entre Proteínas , Proteólise , Receptores de N-Metil-D-Aspartato/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Serina/química , Estereoisomerismo , Homologia Estrutural de Proteína
10.
Biochim Biophys Acta ; 1854(9): 1150-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25701391

RESUMO

In the brain, d-amino acid oxidase plays a key role in modulating the N-methyl-d-aspartate receptor (NMDAR) activation state, catalyzing the stereospecific degradation of the coagonist d-serine. A relationship between d-serine signaling deregulation, NMDAR dysfunction, and CNS diseases is presumed. Notably, the R199W substitution in human DAAO (hDAAO) was associated with familial amyotrophic lateral sclerosis (ALS), and further coding substitutions, i.e., R199Q and W209R, were also deposited in the single nucleotide polymorphism database. Here, we investigated the biochemical properties of these different hDAAO variants. The W209R hDAAO variant shows an improved d-serine degradation ability (higher activity and affinity for the cofactor FAD) and produces a greater decrease in cellular d/(d+l) serine ratio than the wild-type counterpart when expressed in U87 cells. The production of H2O2 as result of excessive d-serine degradation by this hDAAO variant may represent the factor affecting cell viability after stable transfection. The R199W/Q substitution in hDAAO altered the protein conformation and enzymatic activity was lost under conditions resembling the cellular ones: this resulted in an abnormal increase in cellular d-serine levels. Altogether, these results indicate that substitutions that affect hDAAO functionality directly impact on d-serine cellular levels (at least in the model cell system used). The pathological effect of the expression of the R199W hDAAO, as observed in familial ALS, originates from both protein instability and a decrease in kinetic efficiency: the increase in synaptic d-serine may be mainly responsible for the neurotoxic effect. This information is expected to drive future targeted treatments.


Assuntos
D-Aminoácido Oxidase/química , Polimorfismo de Nucleotídeo Único , Linhagem Celular Tumoral , D-Aminoácido Oxidase/genética , D-Aminoácido Oxidase/metabolismo , Escherichia coli/genética , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Cinética , Ligantes , Conformação Proteica , Relação Estrutura-Atividade , Transfecção
11.
BMC Biotechnol ; 13: 32, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23557146

RESUMO

BACKGROUND: Human α-synuclein is a small-sized, natively unfolded protein that in fibrillar form is the primary component of Lewy bodies, the pathological hallmark of Parkinson's disease. Experimental evidence suggests that α-synuclein aggregation is the key event that triggers neurotoxicity although additional findings have proposed a protective role of α-synuclein against oxidative stress. One way to address the mechanism of this protective action is to evaluate α-synuclein-mediated protection by delivering this protein inside cells using a chimeric protein fused with the Tat-transduction domain of HIV Tat, named TAT-α-synuclein. RESULTS: A reliable protocol was designed to efficiently express and purify two different forms of human α-synuclein. The synthetic cDNAs encoding for the native α-synuclein and the fusion protein with the transduction domain of Tat protein from HIV were overexpressed in a BL21(DE3) E. coli strain as His-tagged proteins. The recombinant proteins largely localized (≥ 85%) to the periplasmic space. By using a quick purification protocol, based on recovery of periplasmic space content and metal-chelating chromatography, the recombinant α-synuclein protein forms could be purified in a single step to ≥ 95% purity. Both α-synuclein recombinant proteins form fibrils and the TAT-α-synuclein is also cytotoxic in the micromolar concentration range. CONCLUSIONS: To further characterize the molecular mechanisms of α-synuclein neurotoxicity both in vitro and in vivo and to evaluate the relevance of extracellular α-synuclein for the pathogenesis and progression of Parkinson's disease, a suitable method to produce different high-quality forms of this pathological protein is required. Our optimized expression and purification procedure offers an easier and faster means of producing different forms (i.e., both the native and the TAT-fusion form) of soluble recombinant α-synuclein than previously described procedures.


Assuntos
Escherichia coli/metabolismo , alfa-Sinucleína/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Cromatografia de Afinidade , Dicroísmo Circular , Clonagem Molecular , Humanos , Microscopia Confocal , Periplasma/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Espectrofotometria Ultravioleta , alfa-Sinucleína/química , alfa-Sinucleína/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
12.
Nanomedicine (Lond) ; 8(11): 1797-806, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23384700

RESUMO

AIM: The authors propose a new magnetic nanoparticle-enzyme system for cancer therapy capable of targeting the enzyme and consequently decreasing the adverse effects, meanwhile improving the patient's life quality. MATERIALS & METHODS: The authors have functionalized Fe3O4 nanoparticles with 3-amino-propyltriethoxysilane (APTES) and conjugated it to yeast D-amino acid oxidase (DAAO) by coupling this with glutaraldehyde. RESULTS & CONCLUSION: The authors have tested the Fe3O4-APTES-DAAO system on three tumor cell lines. Exposed cells show, at the electron microscope level, nanoparticles on the surface of the plasma membrane and inside endocytic vesicles. Fe3O4-APTES-DAAO caused a substantial decrease of cell viability greatly augmented when D-alanine, a DAAO substrate, was added. Fe3O4-APTES-DAAO was demonstrated to be more effective than free DAAO, confirming the validity of the system in cancer therapy.


Assuntos
D-Aminoácido Oxidase/química , Nanopartículas/química , Neoplasias/terapia , Sobrevivência Celular/fisiologia , Células HCT116 , Humanos , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Biochim Biophys Acta ; 1832(3): 400-10, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23219954

RESUMO

Considering the key role of d-serine in N-methyl-d-aspartate receptor-mediated neurotransmission, it is highly relevant to define the role that enzymes play in d-serine synthesis and degradation. In particular, the details of regulation of the d-serine catabolic human enzyme d-amino acid oxidase (hDAAO) are unknown although different lines of evidence have shown it to be involved in schizophrenia susceptibility. Here we investigated the effect of three single nucleotide polymorphisms and known mutations in hDAAO, i.e., D31H, R279A, and G331V. A very low amount of soluble G331V hDAAO is produced in E. coli cells: the recombinant variant enzyme is fully active. Human U87 glioblastoma cells transiently transfected for G331V hDAAO show a low viability, a significant amount of protein aggregates, and augmented apoptosis. The recombinant D31H and R279A hDAAO variants do not show alterations in tertiary and quaternary structures, thermal stability, binding affinity for inhibitors, and the modulator pLG72, whereas the kinetic efficiency and the affinity for d-serine and for FAD were higher than for the wild-type enzyme. While these effects for the substitution at position 31 cannot be structurally explained, the R279A mutation might affect the hDAAO FAD-binding affinity by altering the "structurally ambivalent" peptide V47-L51. In agreement with the observed increased activity, expression of D31H and R279A hDAAO variants in U87 cells produces a higher decrease in cellular d/(d+l) serine ratio than the wild-type counterpart. In vivo, these substitutions could affect cellular d-serine concentration and its release at synapsis and thus might be relevant for schizophrenia susceptibility.


Assuntos
D-Aminoácido Oxidase/genética , Predisposição Genética para Doença/genética , Mutação de Sentido Incorreto , Esquizofrenia/genética , Apoptose/genética , Western Blotting , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Clorpromazina/química , Clorpromazina/metabolismo , Dicroísmo Circular , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/metabolismo , Estabilidade Enzimática/genética , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Microscopia Confocal , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Fatores de Risco , Esquizofrenia/enzimologia , Serina/metabolismo , Temperatura
14.
Amino Acids ; 43(5): 1833-50, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22865246

RESUMO

Since D-amino acids were identified in mammals, D-serine has been one of the most extensively studied "unnatural amino acids". This brain-enriched transmitter-like molecule plays a pivotal role in the human central nervous system by modulating the activity of NMDA receptors. Physiological levels of D-serine are required for normal brain development and function; thus, any alterations in neuromodulator concentrations might result in NMDA receptor dysfunction, which is known to be involved in several pathological conditions, including neurodegeneration(s), epilepsy, schizophrenia, and bipolar disorder. In the brain, the concentration of D-serine stored in cells is defined by the activity of two enzymes: serine racemase (responsible for both the synthesis and degradation) and D-amino acid oxidase (which catalyzes D-serine degradation). Both enzymes emerged recently as new potential therapeutic targets for NMDA receptor-related diseases. In this review we have focused on human D-amino acid oxidase and provide an extensive overview of the biochemical and structural properties of this flavoprotein and their functional significance. Furthermore, we discuss the mechanisms involved in modulating enzyme activity and stability with the aim to substantiate the pivotal role of D-amino acid oxidase in brain D-serine metabolism in physiological and pathological conditions and to highlight its great significance for novel drug design/development.


Assuntos
Encéfalo/enzimologia , D-Aminoácido Oxidase/metabolismo , Doenças Neurodegenerativas/enzimologia , Neurotransmissores/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Encéfalo/fisiopatologia , D-Aminoácido Oxidase/química , D-Aminoácido Oxidase/genética , Estabilidade Enzimática , Expressão Gênica , Humanos , Cinética , Modelos Moleculares , Doenças Neurodegenerativas/fisiopatologia , Neurotransmissores/química , Racemases e Epimerases/metabolismo , Serina/química , Estereoisomerismo , Relação Estrutura-Atividade , Transmissão Sináptica
15.
Methods Mol Biol ; 794: 313-24, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21956573

RESUMO

The presence of D-amino acids in foods is promoted by harsh technological processes (e.g., high temperature or extreme pH values) or can be the consequence of adulteration or microbial contamination (D-amino acids are major components of the bacterial cell wall). For this reason, quality control is becoming more and more important both for the industry (as a cost factor) and for consumer protection. For routine food analysis and quality control, simple and easily applicable analytical methods are needed: biosensors can often satisfy these requirements. The use of an enzymatic, stereospecific reaction could confer selectivity to a biosensor for detecting and quantifying D-amino acids in foodstuffs. The flavoenzyme D-amino acid oxidase from the yeast Rhodotorula gracilis is an ideal biocatalyst for this kind of application because of its absolute stereospecificity, very high turnover number with various substrates, tight binding with the FAD cofactor, and broad substrate specificity. Furthermore, alterations in the local brain concentrations of D-serine (predominantly D-amino acid in the mammalian central nervous system) have been related to several neurological and psychiatric diseases. Therefore, quantifying this neuromodulator represents an important task in biological, medical, and pharmaceutical research. Recently, an enzymatic microbiosensor, also using R. gracilis D-amino acid oxidase as biocatalyst, was developed for detecting D-serine in vivo.


Assuntos
Aminoácidos/análise , Técnicas Biossensoriais , Biocatálise , Análise de Alimentos
16.
Protein Sci ; 19(8): 1500-12, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20521334

RESUMO

In human brain the flavoprotein D-amino acid oxidase (hDAAO) is responsible for the degradation of the neuromodulator D-serine, an important effector of NMDA-receptor mediated neurotransmission. Experimental evidence supports the concept that D-serine concentration increase by hDAAO inhibition may represent a valuable therapeutic approach to improve the symptoms in schizophrenia patients. This study investigated the effects on hDAAO conformation and stability of the substrate D-serine (or of the pseudo-substrate trifluoro-D-alanine), the FAD cofactor, and two inhibitors (benzoate, a classical substrate-competitive inhibitor and the drug chlorpromazine (CPZ), which competes with the cofactor). We demonstrated that all these compounds do not alter the interaction of hDAAO with its physiological partner pLG72. The ligands used affect the tertiary structure of hDAAO differently: benzoate or trifluoro-D-alanine binding increases the amount of the holoenzyme form in solution and stabilizes the flavoprotein, while CPZ binding favors a protein conformation resembling that of the apoprotein, which is more sensitive to degradation. Interestingly, the apoprotein form of hDAAO binds the substrate D-serine: this interaction increases FAD binding thus increasing the amount of active holoenzyme in solution. Benzoate and CPZ similarly modify the short-term cellular D-serine concentration but affect the cellular concentration of hDAAO differently. In conclusion, the different alteration of hDAAO conformation and stability by the ligands used represents a further parameter to take into consideration during the development of new drugs to cope schizophrenia.


Assuntos
Antipsicóticos/uso terapêutico , D-Aminoácido Oxidase/metabolismo , Desenho de Fármacos , Ligantes , Esquizofrenia/tratamento farmacológico , Esquizofrenia/enzimologia , Benzoatos/metabolismo , Clorpromazina/uso terapêutico , D-Aminoácido Oxidase/química , Estabilidade Enzimática , Flavina-Adenina Dinucleotídeo/metabolismo , Humanos , Estrutura Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Serina/metabolismo
17.
Biochimie ; 91(11-12): 1499-508, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19751796

RESUMO

The apoprotein of the FAD-containing flavoenzyme glycine oxidase from Bacillus subtilis was obtained at pH 8.5 by dialyzing the holoenzyme against 2 M KBr in 0.25 M Tris-HCl and 20% glycerol. The apoprotein of glycine oxidase shows high protein fluorescence, high exposure of hydrophobic surfaces, and low temperature stability as compared to the holoenzyme. The isolated apoprotein species is present in solution as a monomer which rapidly recovers its tertiary structure and converts into the tetrameric holoenzyme following incubation with free FAD. The reconstitution process follows a particular two-stage process; the spectral properties of the reconstituted holoenzyme were virtually indistinguishable from those observed with native glycine oxidase, while the activity was only partially (50%) recovered. The urea-induced unfolding process of glycine oxidase can be considered as a two-step (three-state) process: the presence of intermediate(s) in the unfolding process of the holoenzyme at approximately 2 M urea is evident in the changes of the flavin fluorescence intensity and can be also inferred from the different urea sensitivities of the spectral probes used. On the other hand, only a single transition at approximately 4.5 M urea concentration is observed for the apoprotein form. The chemical denaturation of glycine oxidase holoenzyme is partially reversible (e.g., no activity is recovered when starting the refolding from 4 M urea-denatured holoprotein). Finally, the introduction by site-directed mutagenesis of residues corresponding to those involved in the covalent link with FAD in the related flavoenzyme monomeric sarcosine oxidase failed to convert glycine oxidase into a covalent flavoprotein. These investigations show that the consequences of FAD binding for the stability and folding process distinguish glycine oxidase from enzymes active on similar compounds.


Assuntos
Aminoácido Oxirredutases/metabolismo , Bacillus subtilis/enzimologia , Flavinas/metabolismo , Dobramento de Proteína , Aminoácido Oxirredutases/química , Aminoácido Oxirredutases/isolamento & purificação , Apoproteínas/metabolismo , Sítios de Ligação , Dicroísmo Circular , D-Aminoácido Oxidase/farmacologia , Flavinas/química , Flavoproteínas/química , Flavoproteínas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Sarcosina Oxidase/metabolismo , Temperatura
18.
Biochem J ; 422(2): 265-72, 2009 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-19545238

RESUMO

PH1 (primary hyperoxaluria type 1) is a severe inborn disorder of glyoxylate metabolism caused by a functional deficiency of the peroxisomal enzyme AGXT (alanine-glyoxylate aminotransferase), which converts glyoxylate into glycine using L-alanine as the amino-group donor. Even though pre-genomic studies indicate that other human transaminases can convert glyoxylate into glycine, in PH1 patients these enzymes are apparently unable to compensate for the lack of AGXT, perhaps due to their limited levels of expression, their localization in an inappropriate cell compartment or the scarcity of the required amino-group donor. In the present paper, we describe the cloning of eight human cytosolic aminotransferases, their recombinant expression as His6-tagged proteins and a comparative study on their ability to transaminate glyoxylate, using any standard amino acid as an amino-group donor. To selectively quantify the glycine formed, we have developed and validated an assay based on bacterial GO (glycine oxidase); this assay allows the detection of enzymes that produce glycine by transamination in the presence of mixtures of potential amino-group donors and without separation of the product from the substrates. We show that among the eight enzymes tested, only GPT (alanine transaminase) and PSAT1 (phosphoserine aminotransferase 1) can transaminate glyoxylate with good efficiency, using L-glutamate (and, for GPT, also L-alanine) as the best amino-group donor. These findings confirm that glyoxylate transamination can occur in the cytosol, in direct competition with the conversion of glyoxylate into oxalate. The potential implications for the treatment of primary hyperoxaluria are discussed.


Assuntos
Aspartato Aminotransferases/biossíntese , Aspartato Aminotransferases/genética , Citosol/enzimologia , Glioxilatos/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Animais , Aspartato Aminotransferases/fisiologia , Citosol/química , Glioxilatos/química , Humanos , Coelhos , Proteínas Recombinantes/química , Suínos
19.
Protein Sci ; 18(4): 801-10, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19309736

RESUMO

In the brain, the human flavoprotein D-amino acid oxidase (hDAAO) is involved in the degradation of the gliotransmitter D-serine, an important modulator of NMDA-receptor-mediated neurotransmission; an increase in hDAAO activity (that yields a decrease in D-serine concentration) was recently proposed to be among the molecular mechanisms leading to the onset of schizophrenia susceptibility. This human flavoenzyme is a stable homodimer (even in the apoprotein form) that distinguishes from known D-amino acid oxidases because it shows the weakest interaction with the flavin cofactor in the free form. Instead, cofactor binding is significantly tighter in the presence of an active site ligand. In order to understand how hDAAO activity is modulated, we investigated the FAD binding process to the apoprotein moiety and compared the folding and stability properties of the holoenzyme and the apoprotein forms. The apoprotein of hDAAO can be distinguished from the holoenzyme form by the more "open" tertiary structure, higher protein fluorescence, larger exposure of hydrophobic surfaces, and higher sensitivity to proteolysis. Interestingly, the FAD binding only slightly increases the stability of hDAAO to denaturation by urea or temperature. Taken together, these results indicate that the weak cofactor binding is not related to protein (de)stabilization or oligomerization (as instead observed for the homologous enzyme from yeast) but rather should represent a means of modulating the activity of hDAAO. We propose that the absence in vivo of an active site ligand/substrate weakens the cofactor binding, yielding the inactive apoprotein form and thus avoiding excessive D-serine degradation.


Assuntos
D-Aminoácido Oxidase/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , D-Aminoácido Oxidase/química , Estabilidade Enzimática , Flavina-Adenina Dinucleotídeo/química , Humanos , Hidrólise , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Desnaturação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Temperatura , Tripsina/metabolismo , Ureia/metabolismo
20.
Protein Sci ; 17(3): 409-19, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18218720

RESUMO

The flavoprotein cholesterol oxidase (CO) from Brevibacterium sterolicum is a monomeric flavoenzyme containing one molecule of FAD cofactor covalently linked to His69. The elimination of the covalent link following the His69Ala substitution was demonstrated to result in a significant decrease in activity, in the midpoint redox potential of the flavin, and in stability with respect to the wild-type enzyme, but does not modify the overall structure of the enzyme. We used CO as a model system to dissect the changes due to the elimination of the covalent link between the flavin and the protein (by comparing the wild-type and H69A CO holoproteins) with those due to the elimination of the cofactor (by comparing the holo- and apoprotein forms of H69A CO). The apoprotein of H69A CO lacks the characteristic tertiary structure of the holoprotein and displays larger hydrophobic surfaces; its urea-induced unfolding does not occur by a simple two-state mechanism and is largely nonreversible. Minor alterations in the flavin binding region are evident between the native and the refolded proteins, and are likely responsible for the low refolding yield observed. A model for the equilibrium unfolding of H69A CO that also takes into consideration the effects of cofactor binding and dissociation, and thus may be of general significance in terms of the relationships between cofactor uptake and folding in flavoproteins, is presented.


Assuntos
Colesterol Oxidase/química , Flavina-Adenina Dinucleotídeo/química , Apoenzimas/química , Brevibacterium/enzimologia , Calorimetria , Colesterol Oxidase/genética , Estabilidade Enzimática , Histidina/genética , Mutagênese Sítio-Dirigida , Desnaturação Proteica , Dobramento de Proteína , Espectrometria de Fluorescência , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...